10 research outputs found

    Fully gapped topological surface states in Bi2_2Se3_3 films induced by a d-wave high-temperature superconductor

    Full text link
    Topological insulators are a new class of materials, that exhibit robust gapless surface states protected by time-reversal symmetry. The interplay between such symmetry-protected topological surface states and symmetry-broken states (e.g. superconductivity) provides a platform for exploring novel quantum phenomena and new functionalities, such as 1D chiral or helical gapless Majorana fermions, and Majorana zero modes which may find application in fault-tolerant quantum computation. Inducing superconductivity on topological surface states is a prerequisite for their experimental realization. Here by growing high quality topological insulator Bi2_2Se3_3 films on a d-wave superconductor Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} using molecular beam epitaxy, we are able to induce high temperature superconductivity on the surface states of Bi2_2Se3_3 films with a large pairing gap up to 15 meV. Interestingly, distinct from the d-wave pairing of Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta}, the proximity-induced gap on the surface states is nearly isotropic and consistent with predominant s-wave pairing as revealed by angle-resolved photoemission spectroscopy. Our work could provide a critical step toward the realization of the long sought-after Majorana zero modes.Comment: Nature Physics, DOI:10.1038/nphys274

    Van der Waals epitaxy between the highly lattice mismatched Cu-doped FeSe and Bi₂Te₃

    Get PDF
    We present a structural and density functional theory study of FexCu1−xSe within the three-dimensional topological insulator Bi2Te3. The FexCu1−xSe inclusions are single-crystalline and epitaxially oriented with respect to the Bi2Te3 thin film. Aberration-corrected scanning transmission electron microscopy and electron energy loss spectroscopy show an atomically sharp FeICu1−xSe/Bi2Te3 interface. The FexCu1−xSe/Bi2Te3 interface is determined by Se–Te bonds and no misfit dislocations are observed, despite the different lattice symmetries and large lattice mismatch of ∼19%. First-principle calculations show that the large strain at the FexCu1−xSe/Bi2Te3 interface can be accommodated by van der Waals-like bonding between Se and Te atoms

    Topological Insulator Materials

    No full text
    corecore